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Analysis of Transient Interaction of Electromagnetic Pulse
with an Air Layer in a Dielectric Medium Using

Wavelet-Based Implicit TDIE Formulation

Yair Shifman and Yehuda Leviatan

Abstract—The interaction of transient electromagnetic pulse with an
air layer in a dielectric medium is formulated in terms of a time-domain
integral equation and solved numerically via the method of moments.
Previous related works pointed to the inherent inadequacy of the
marching-on-in-time method in this case, but suggested no remedy. This
paper explains why an implicit modeling scheme would work effectively
in this case. It is also noted that the use of an implicit scheme would
normally involve a solution of a very large and dense matrix equation. To
alleviate this drawback of the implicit scheme, the use of a wavelet-based
impedance-matrix-compression technique, which has facilitated in the
very recent past solutions of time-domain problems with greater efficiency,
is described.

Index Terms—Air layer, implicit formulation, time-domain integral
equation, transient analysis, wavelet.

I. INTRODUCTION

Analysis of transient interaction of an electromagnetic pulse with
a layer, characterized by a dielectric constant lower than that of the
surrounding medium, is often required, e.g., in the study of human tis-
sues and the investigation of underground air tunnels and inner faults in
structures [1], [2]. This interaction problem can be formulated in terms
of a time-domain volume integral equation, using the Green’s function
of homogeneous unbounded space characterized by the lower phase ve-
locity of the denser surrounding medium. In turn, the equation is solved
numerically via the method of moments (MoM). However, application
of an explicit modeling scheme and solving the resultant lower trian-
gular matrix by a standard marching-on-in-time (MOT) method cannot,
in this case, lead to the correct solution [3], [4]. This, as was noted in
[5], is due to the fact that, in the explicit scheme, any spatial interval
is larger than the distance traveled by the waves during the specified
time interval. Consequently, propagation of high-phase-velocity waves
cannot be provided for.

In this paper, we present a solution based on the implicit modeling
scheme [6]–[9], which overcomes the deficiency of the MOT proce-
dure, as well as the complexity involved in solving the implicit MoM
equation. The solution is obtained via a novel method, which employs a
spatio–temporal wavelet basis to facilitate an accurate solution simulta-
neously at all time steps within the time frame of interest. The wavelet-
based MoM solution of the time-domain integral equation (TDIE) is
effected via the iterative impedance-matrix-compression (IMC) pro-
cedure, which gradually constructs and solves a compressed version
of the matrix equation until the desired level of accuracy is obtained
[10]–[12].
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Fig. 1. Scattering of electromagnetic plane wave by an air layer (I) in a
dielectric medium (II).

Fig. 2. Error versus compression ratio.

This paper is organized as follows. Section II presents the problem
and outlines the method of solution. Numerical results are given in Sec-
tion III. Finally, a summary and conclusions are given in Section IV.

II. PROBLEM FORMULATION

The problem under consideration is the one-dimensional transient
interaction of a Gaussian pulse of an electromagnetic plane wave with
an air layer in a dielectric medium, as depicted in Fig. 1.

The medium has a dielectric constant" > "0 and the air layer fills the
entire space between planesz = 0 andz = d. The incident Gaussian
pulse, propagating along thez-direction with its electric-field vector
parallel to the surface of the layer, is given by

E
inc(z; t) = Einc

x (z; t)x̂ = Einc
0 e�(�=�T ) cos(!0� )x̂: (1)

Here,!0 and�T denote, respectively, the pulse central frequency and
width. Also,� = t� td� z=c, wheretd denotes the time at which the
peak of the pulse impinges on thez = 0 plane, andc = 1=

p
"�0 is the

speed of light in the surrounding dielectric medium. We are interested
in finding the yet unknown total electric fieldEx expressed as

Ex(z; t) =
EI
x(z; t); 0 � z � d

EII
x (z; t); z < 0; z > d

(2)

whereEI
x andEII

x are the total electric fields in the air layer and the sur-
rounding dielectric medium, respectively. The integral equation for the
problem under consideration is obtained by first introducing an equiv-
alent polarization current, radiating in free space, defined as

Jex(z; t) = ("� "0)
@

@t
E

I

x
(z; t); 0 � z � d: (3)
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Fig. 3. Normalized electric field at various time steps. The dashed line denotes the solution obtained via the iterative IMC procedure after five iterations (640
basis functions), while the solid line presents the analytic solution.

Using the appropriate Green’s function

g(z; t) = �
�0c

2
� t�

jzj

c
(4)

the convolution of (3) with (4), in space as well as time, together with
the appropriate continuity condition, yields the TDIE for the problem
[3], [4]. We have

E
I
x
(z; t) +

�0c("0 � ")

2

d

0

dz0
@

@�
E

I
x(z

0
; �)

�=t�(jz�z j=c)

= E
inc
x (z; t); 0 � z � d: (5)

Then, by defining the operator

L(�) = (�) +
�0c("0 � ")

2

d

0

dz0
@

@�
(�)

�=t�(jz�z j=c

;

0 � z � d (6)

one obtains

L E
I
x(z; t) = E

inc
x (z; t); 0 � z � d: (7)

To cast (7) into a matrix form, we apply the MoM [13] and span the
unknown fieldEI

x in terms of two sets of basis functionsfUn(z)g
N
n=1

andfTp(t)g
N
p=1 as follows:

E
I
x(z; t) =

N

n=1

N

p=1

anpUn(z)Tp(t); 0 � z � d (8)

where theanp are unknown coefficients. For simplicity, and without
loss of generality, it is assumed that these functions are standard pulse
basis functions. Substituting (7) into (8), and applying a Galerkin’s
method, one then arrives at

Z(N �N )�(N �N )
~I(N �N )�1 = ~V(N �N )�1 (9)

where

Zij = Um(z); Tq(t); L Un(z)Tp(t) ;

i = m+ (q � 1)�NS; j = n+ (p� 1)�NS (10)

Ij = anp; j = n+ (p� 1)�NS (11)

Vi = Um(z); Tq(t); E
inc
x (z; t) ; i = m+ (q � 1)�NS

(12)
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Fig. 4. Normalized electric field at various time steps. The dashed line denotes the solution obtained via the iterative IMC procedure after 15 iterations (1920
basis functions), while the solid line presents the analytic solution.

and

hf; gi �
1

�1

f(�)g(�) d�: (13)

A solution of (9) for~I determines the unknown coefficientsanp, which
yield the electric field in the air layerEI

x via (8). UsingEI

x, the electric
field in the surrounding mediumEII

x can then be readily derived from

E
II

x (z; t) = E
inc
x (z; t)�

�0c("0 � ")

2

d

0

dz0
@

@�

� EI
x(z

0
; �)

�=t�(jz�z j=c)

; z < 0; z > d:

(14)

The discretization scheme for the combined spatial and temporal do-
mains is either explicit or implicit. In the explicit scheme, the spatial
and temporal sampling intervals�z and�t, which are chosen to meet
the resolution requirements in their respective domains, obey

�z � c�t (15)

while in the implicit scheme, they obey

�z < c�t: (16)

The explicit scheme requires that the centers of the spatial pulse basis
functions be at least as far apart as the distance that the wave propa-
gating at velocityc can travel within each time step, thus, there is no
interaction between any two such functions within the same time in-
terval. The resultant matrix equation in this case is lower triangular and
its solution can be obtained by MOT. However, the fact that the waves
emerging from one basis function do not reach the adjacent functions
within a given time step also implies that the explicit scheme cannot
provide for the propagation of high phase-velocity(c0) waves in the
air layer [5], and the solution obtained in this way will never be the
correct one. On the other hand, (16) ensures that each basis function
interacts at least with its adjacent neighbors, thus, there exists a virtual
path of propagation between any two basis functions within any given
time step. This means that the effective propagation velocity can be
higher thanc, and reach the desired value ofc0. It may also be added
that the implicit scheme is the more logical one to employ considering
bandwidth and sampling requirements. Specifically, the value of�t is
set first according to thea priori known temporal bandwidth of the in-
cident pulse. In turn,�z is set to meet the smallest value required to
match the finest spatial desired features of the unknown.

Nevertheless, the implicit schemedoesrequire solving matrix equa-
tions. Obviously, solving (9) for all locations, and simultaneously for
all the times, requires using almost all the original pulse basis functions,
which brings about the need for an efficient method of solution. In
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Fig. 5. Normalized electric field at various time steps. Each figure illustrates the analytic solution (solid line) and the one obtained using the explicit scheme
(dashed line).

this study, we consider transforming (9) into a spatio–temporal wavelet
basis [14], [15], and exploiting the sparsity of the solution in this repre-
sentation (for simplicity, we have chosen to use the Haar wavelet basis,
which is easy to implement. A more elaborate discussion of the use
of spatio–temporal basis functions and the Haar wavelet functions can
be found in [10]–[12]). To reduce the number of required basis func-
tions, while keeping the desired level of accuracy, we use an alternative
solution technique that has been proposed in [12]. Starting with an ini-
tial guess of the solution, the spatio–temporal Haar wavelet analysis is
applied to extract the dominant expansion functions. Based on these
dominant functions, a reduced (compressed) matrix equation is then
constructed and solved. To refine the solution, the compression con-
tinues iteratively, adding on more expansion functions until the desired
level of accuracy is achieved. The solution of the matrix equation at
each stage is effected by a conjugate-gradient (CG) procedure. The CG
procedure is rendered fast, converging upon taking as an initial guess
the solution arrived at in the preceding stage.

III. N UMERICAL RESULTS

Numerical results are given here for the solution of the problem de-
scribed in Section II. Considering the given computation resources,
the various parameters have been set as follows:�T = 0:224 ns,
td = �T , f0 = !0=2� = 0:375 GHz, d = 0:25 m = 8:33c�T ,

" = 5"0, NS = 64, NT = 128, i.e., 8192 unknowns. In this solu-
tion, spatio–temporal Haar wavelet basis functions were used. Also,
128 functions were selected at each stage of the iterative IMC proce-
dure. To study the performance of the new method, we first define the
error in the solution at thelth iteration as

Error=
kEl

x � EREF

x k2
kEREF

x k2 (17)

whereEl

x is the solution at thelth iteration,EREF

x is the analytic solu-
tion of this problem obtained via time–harmonic analysis followed by
inverse Fourier transform, and

kE(z; t)k2 = 1p
d� Tend

d

0

dz
T

0

dtjE(z; t)j2 (18)

whereTend is the temporal duration of interest. In our example,Tend =
5:5 ns. This error is plotted in Fig. 2 as a function of the compression
ratio, which is defined as

Compression Ratio= 1� ( ~NT � ~NS)
2

(NT �NS)2
(19)

where( ~NT � ~NS) is the dimension of the square compressed matrix.
The compression ratio is the figure-of-merit for the size of the ma-
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trix equation actually solved (compressed matrix) in comparison to the
original full-size matrix. Figs. 3 and 4 show the electric field at various
time steps after the fifth (640 out of 8192 basis functions and compres-
sion of 92%) and fifteenth iterations (1920 out of 8192 basis functions
and compression of 77%), respectively, together with the reference re-
sultEREF

x
.

Finally, for comparative purposes, Fig. 5 illustrates a few results ob-
tained using the explicit scheme (dashed line). Obviously, the explicit
scheme does not yield the right solution (solid line). The results given
here are for a shorter time duration than displayed in Figs. 3 and 4. This
duration is limited because the explicit solution very soon becomes un-
stable. Also, the time intervals between successive graphs are shorter
than in Figs. 3 and 4. This is done in order to illustrate in more detail
the inherent lag of the explicit solution behind the right one.

IV. SUMMARY AND CONCLUSIONS

A wavelet-based MoM analysis of an implicit TDIE formulation for
the problem of electromagnetic pulse interaction with an air layer in
a dielectric medium has been presented. We have demonstrated the
inadequacy of the explicit formulation in this case, and have showed
that only the implicit formulation is the proper one for analyzing the
problem at hand. In addition, the solution has been augmented by ap-
plying the IMC method. This is a stable iterative procedure, whereby
the solution accuracy, at every spatial location and simultaneously at
all the times of interest, is gradually refined.
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Investigation of Static and Quasi-Static Fields
Inherent to the Pulsed FDTD Method

Rolando Pontalti, Jacek Nadobny, Peter Wust, Alessandro Vaccari,
and Dennis Sullivan

Abstract—This paper demonstrates that trailing dc offsets, which can af-
fectE- or H-fields in finite-difference time-domain simulations, are phys-
ically correct static solutions of Maxwell’s equations instead of being nu-
merically induced artifacts. It is shown that they are present on the grid
when sources are used, which generates nondecaying charges. Static solu-
tions are investigated by exciting electric and magnetic dipoles models with
suitable waveforms.

Index Terms—Divergence, FDTD method, Hertzian dipole, infinitesimal
current element, triple cosine.

I. INTRODUCTION

The pulsed finite-difference time-domain (FDTD) method [1] is
based on a transitory system excitation coupled with the Fourier
transform of its response. Excitation is introduced either by “soft”
(added) or “hard” (fixed) sources [2]. We use soft sources to model
elementary (or Hertzian) electricp and magneticm time-varying
dipoles, and compare FDTD results with the analytic solutions, in the
static and quasi-static cases.

II. STATIC FIELDS IN FDTD

The FDTD algorithm solves an initial boundary-value problem using
only Maxwell’s curl equations. Let us investigate briefly the way in
which these vector equations determine the fields’ temporal behavior.
To this end, we need to study the divergence ofB andD, assuming
sources defined as an impressed current density termJs in therrr�H

equation. Taking the divergence of both sides of the curl equations, with
the initial values(rrr �B)t=0 � 0 and(rrr �D)t=0 � 0, we notice the
following.
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