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Analysis of Transient Interaction of Electromagnetic Pulse
with an Air Layer in a Dielectric Medium Using
Wavelet-Based Implicit TDIE Formulation

Yair Shifman and Yehuda Leviatan

Abstract—The interaction of transient electromagnetic pulse with an
air layer in a dielectric medium is formulated in terms of a time-domain
integral equation and solved numerically via the method of moments.
Previous related works pointed to the inherent inadequacy of the
marching-on-in-time method in this case, but suggested no remedy. This
paper explains why an implicit modeling scheme would work effectively Fig 1. Scattering of electromagnetic plane wave by an air layer (1) in a
in this case. It is also noted that the use of an implicit scheme would giglectric medium (I1).
normally involve a solution of a very large and dense matrix equation. To
alleviate this drawback of the implicit scheme, the use of a wavelet-based

impedance-matrix-compression technique, which has facilitated in the 50
very recent past solutions of time-domain problems with greater efficiency, — 40
. . (=]
is described. =
) o 30
Index Terms—Air layer, implicit formulation, time-domain integral o
equation, transient analysis, wavelet. g 2
10
I. INTRODUCTION % 2 4 e 8 100
Analysis of transient interaction of an electromagnetic pulse with Compression Ratio (%)

a layer, characterized by a dielectric constant lower than that of the
surrounding medium, is often required, e.g., in the study of human tfgg. 2. Error versus compression ratio.
sues and the investigation of underground air tunnels and inner faults in

structures [1], [2]. This interaction problem can be formulated in terms This paper is organized as follows. Section Il presents the problem

of a time-domain volume integral equation, using the Green’s functl%d outlines the method of solution. Numerical results are given in Sec-
ofhomogeneous unbounded space characterized by the '°_W9T phas‘ﬁgﬁ'lll. Finally, a summary and conclusions are given in Section IV.
locity of the denser surrounding medium. In turn, the equation is solved

numerically via the method of moments (MoM). However, application
of an explicit modeling scheme and solving the resultant lower trian-
gular matrix by a standard marching-on-in-time (MOT) method cannot, The problem under consideration is the one-dimensional transient
in this case, lead to the correct solution [3], [4]. This, as was notediimteraction of a Gaussian pulse of an electromagnetic plane wave with
[5], is due to the fact that, in the explicit scheme, any spatial intervah air layer in a dielectric medium, as depicted in Fig. 1.
is larger than the distance traveled by the waves during the specifiedhe medium has a dielectric constant =, and the air layer fills the
time interval. Consequently, propagation of high-phase-velocity wavestire space between planes= 0 andz = d. The incident Gaussian
cannot be provided for. pulse, propagating along thedirection with its electric-field vector

In this paper, we present a solution based on the implicit modeliparallel to the surface of the layer, is given by
scheme [6]-[9], which overcomes the deficiency of the MOT proce-
dure, as well as the complexity involved in solving the implicit MoM E™ (2, 1) = B (2, )k = EPe /AT cos(wer)x. (1)
equation. The solution is obtained via a novel method, which employs a
spatio—temporal wavelet basis to facilitate an accurate solution simultéere,w, andAT denote, respectively, the pulse central frequency and
neously at all time steps within the time frame of interest. The waveletidth. Also,r = t — t4 — z /¢, wheretq denotes the time at which the
based MoM solution of the time-domain integral equation (TDIE) ipeak of the pulse impinges on the= 0 plane, and: = 1/,/zu0 is the
effected via the iterative impedance-matrix-compression (IMC) prepeed of light in the surrounding dielectric medium. We are interested
cedure, which gradually constructs and solves a compressed versipfinding the yet unknown total electric fiel#, expressed as
of the matrix equation until the desired level of accuracy is obtained
[10]-{12]. 9 {E% 1, 0<z<d

Ey(z, 1) = .
E. (2, 1), 2<0,2>d
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Fig. 3. Normalized electric field at various time steps. The dashed line denotes the solution obtained via the iterative IMC procedure afitiofiee(&40

basis functions), while the solid line presents the analytic solution.

Using the appropriate Green’s function

g(z./ t):—%(S(t_%) 4)

the convolution of (3) with (4), in space as well as time, together with
the appropriate continuity condition, yields the TDIE for the problem

[3], [4]- We have

L
El.(z, f)—l—m / (lz'_ﬂEl(z',T)
2 o or

] T=t—(|z—=2"|/¢c)
=E(st), 0<z<d (5)
Then, by defining the operator
NS ~d
oo =0+ 1A= [La D) /
2 0 or T=t—(|z—z'|/c
0<z<d (6)
one obtains
c (ET( f)) —E™(5 1), 0<:z<d %)

To cast (7) into a matrix form, we apply the MoM [13] and span the
unknown fieldE}. in terms of two sets of basis functiofi,, (=)}, 2,
and{7,(t)}.7, as follows:

Ng N

Er(zt)= D0 D anplha(2)To(0),

n=1 p=1

0<z<d (8)

where theu,, are unknown coefficients. For simplicity, and without
loss of generality, it is assumed that these functions are standard pulse
basis functions. Substituting (7) into (8), and applying a Galerkin's
method, one then arrives at

Z(NT X Ng) X (Npx NS)I(NT X Ng)x1 = "'ENT X Ng)x1 (9)

where

7 = <um(z>, (T,00). z(un<z>7p<t>)>>ﬁ
i=m+(¢q—1)XNs; j=n+(p—1)X Ng

j=7l+(p—1)><Ng

(10
11

Vi= <Um(zm <Tq(t‘)7 E,(z, t)>>-/ i=m+(qg—1)x Ns
(12

Ij = anp,
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Fig. 4. Normalized electric field at various time steps. The dashed line denotes the solution obtained via the iterative IMC procedure afiend §ligsat
basis functions), while the solid line presents the analytic solution.

and The explicit scheme requires that the centers of the spatial pulse basis
oo functions be at least as far apart as the distance that the wave propa-
(f,9) = / F(&)g(¢) d¢. (13) gating at velocitye can travel within each time step, thus, there is no
interaction between any two such functions within the same time in-
A solution of (9) forl determines the unknown coefficients, , which i[erval. T_he resultant ma_trix equation in this case is lower triangular and
yield the electric field in the air layeE., via (8). UsingE-, the electric its so|u_t|on can be obta|_ned by _MOT' However, the faCt_ that the waves
emerging from one basis function do not reach the adjacent functions
within a given time step also implies that the explicit scheme cannot
m ine poc(so —e) [, 0 provide for the propagation of high phase-velodity) waves in the
B (=) = B (= 1) = - a9 /D dz a7 air layer [5], and the solution obtained in this way will never be the
correct one. On the other hand, (16) ensures that each basis function
s z <0, z>d. interacts atleastwith its adjacent neighbors, thus, there exists a virtual
r=t=(lz=='|/¢) path of propagation between any two basis functions within any given
(14)  time step. This means that the effective propagation velocity can be

The discretization scheme for the combined spatial and temporal %}égher thare, and reach the desired valueat It may also be added

L L L L . that the implicit scheme is the more logical one to employ considerin
mains is either explicit or implicit. In the explicit scheme, the spati P 9 ploy 9

nd temporal samoling intervals: andAz. which are chosen to meet andwidth and sampling requirements. Specifically, the valu®tds
;e reesolpuc;ignsrz lE)irer?wen?s n trfe?r rés ’ectivz dir?];inzsibeo €€ set first according to tha priori known temporal bandwidth of the in-
q P ' y cident pulse. In turnAz is set to meet the smallest value required to

—o0

field in the surrounding mediur™! can then be readiiy derived from

- El(z’, 7)

Az > eAt (15) match the finest spatial desired features of the unknown.
- Nevertheless, the implicit scherdeesrequire solving matrix equa-
while in the implicit scheme, they obey tions. Obviously, solving (9) for all locations, and simultaneously for

all the times, requires using almost all the original pulse basis functions,
Az < cAt. (16) which brings about the need for an efficient method of solution. In
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Fig. 5. Normalized electric field at various time steps. Each figure illustrates the analytic solution (solid line) and the one obtained usiligjtteehexpe
(dashed line).

this study, we consider transforming (9) into a spatio—temporal wavetet= 5z9, Ns = 64, Nt = 128, i.e., 8192 unknowns. In this solu-
basis [14], [15], and exploiting the sparsity of the solution in this repréion, spatio—temporal Haar wavelet basis functions were used. Also,
sentation (for simplicity, we have chosen to use the Haar wavelet badi28 functions were selected at each stage of the iterative IMC proce-
which is easy to implement. A more elaborate discussion of the udere. To study the performance of the new method, we first define the
of spatio—temporal basis functions and the Haar wavelet functions @mor in the solution at th&h iteration as

be found in [10]-[12]). To reduce the number of required basis func- IEL — ERPF,
tions, while keeping the desired level of accuracy, we use an alternative Error= —— et
solution technique that has been proposed in [12]. Starting with an ini- [ |

tial guess of the solution, the spatio—temporal Haar wavelet analySiWﬁereEi is the solution at théth iteration, XY is the analytic solu-

applied to extract the dominant expansion functions. Based on thege, o this problem obtained via time—harmonic analysis followed by
dominant functions, a reduced (compressed) matrix equation is thﬁ@erse Fourier transform. and

constructed and solved. To refine the solution, the compression con-

tinues iteratively, adding on more expansion functions until the desired ; 1 -d T

level of accuracy is achieved. The solution of the matrix equation at [|1E(z, )|z = N ES \// dl/ dt|E(z, t)]*  (18)

each stage is effected by a conjugate-gradient (CG) procedure. The CG @ Lend 0 0

procedure is rendered fast, converging upon taking as an initial gu@gsereT.., 4 is the temporal duration of interest. In our examfilg, =

the solution arrived at in the preceding stage. 5.5 ns. This error is plotted in Fig. 2 as a function of the compression
ratio, which is defined as

17

Ill. NUMERICAL RESULTS - I
(N x Ns)

mpression Raties 1 — ————-
Compression Ratie= (Vo x No)?

Numerical results are given here for the solution of the problem de- (19)

scribed in Section Il. Considering the given computation resources, N .
the various parameters have been set as follaWs: = 0.224 ns, where(Nt x Ns) is the dimension of the square compressed matrix.
tqg = AT, fo = wo/27 = 0.375 GHz,d = 0.25 m = 8.33¢cAT, The compression ratio is the figure-of-merit for the size of the ma-
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trix equation actually solved (compressed matrix) in comparison to th¢l2] Y. Shifman and Y. Leviatan, “On the use of spatio—temporal multires-

original full-size matrix. Figs. 3 and 4 show the electric field at various olution analysis in method of moments solutions for the time-domain

time steps after the fifth (640 out of 8192 basis functions and compres- ~ INtegral equation,”lEEE Trans. Antennas Propagatvol. 49, pp.

. . . . , X 1123-1129, Aug. 2001.

sion of 92%) and fifteenth iterations (1920 out of 8192 basis functlon§13] R. F. HarringtonField Computation by Moment MethadsNew York:

and compression of 77%), respectively, together with the reference re- ~ Macmillan, 1968.

sult ERFF [14] I. DaubechiesTen Lectures on WaveletsPhiladelphia, PA: SIAM,
Finally, for comparative purposes, Fig. 5 illustrates a few results ob- 1992. ) i )

tained using the explicit sch_eme (daghed Iing). _Obviously, the explici&ls] %eﬁgggsfggn:b':g;f%%vg lets and Filter Banks Cambridge, MA:

scheme does not yield the right solution (solid line). The results given

here are for a shorter time duration than displayed in Figs. 3 and 4. This

duration is limited because the explicit solution very soon becomes un-

stable. Also, the time intervals between successive graphs are shorter

than in Figs. 3 and 4. This is done in order to illustrate in more detail

the inherent lag of the explicit solution behind the right one. Investigation of Static and Quasi-Static Fields

Inherent to the Pulsed FDTD Method
IV. SUMMARY AND CONCLUSIONS
Rolando Pontalti, Jacek Nadobny, Peter Wust, Alessandro Vaccari,

A wavelet-based MoM analysis of an implicit TDIE formulation for and Dennis Sullivan

the problem of electromagnetic pulse interaction with an air layer in

a dielectric medium has been presented. We have demonstrated the

inadequacy of the explicit formulation in this case, and have showedAbstract—This paper demonstrates that trailing dc offsets, which can af-
that only the implicit formulation is the proper one for analyzing théectE- or H-fields in finite-difference time-domain simulations, are phys-

- : Ily correct static solutions of Maxwell's equations instead of being nu-
problem at hand. In addition, the solution has been augmented by rically induced artifacts. It is shown that they are present on the grid

plying th? IMC method. This is a Sta.ble iter?‘tive progedure, whereR)en sources are used, which generates nondecaying charges. Static solu-
the solution accuracy, at every spatial location and simultaneouslytiahs are investigated by exciting electric and magnetic dipoles models with
all the times of interest, is gradually refined. suitable waveforms.
Index Terms—bivergence, FDTD method, Hertzian dipole, infinitesimal
current element, triple cosine.
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The pulsed finite-difference time-domain (FDTD) method [1] is
based on a transitory system excitation coupled with the Fourier
o o ) ) ) transform of its response. Excitation is introduced either by “soft”
(1] K.S. Nikita, G. D. Mitsis, and N. K. Uzunoglu, "Analysis of focusing of (5qded) or “hard” (fixed) sources [2]. We use soft sources to model
pulsed baseband signals inside a layered tissue medl&BE Trans. | . | . d . . .
Microwave Theory Techvol. 48, pp. 30-39, Jan. 2000. e_ementary (or Hertzian) electrip and magnetlcm_ tlme-v_arylng
[2] T.K.Lee, S.Y.Kim, and J. W. Ra, “Diffraction pattern due to a trapedipoles, and compare FDTD results with the analytic solutions, in the
zoidal air cylinder in a dielectric,Microwave Opt. Technol. Leftvol.  static and quasi-static cases.
27, no. 2, pp. 140-144, Oct. 2000.
[3] J. C. Bolomey, C. Durix, and D. Lesselier, “Time domain integral equa-
tion approach for inhomogeneous and dispersive slab probléE&E Il. STATIC FIELDS IN FDTD

Trans. Antennas Propagat/ol. AP-26, pp. 658-667, Sept. 1978. ; e ~ ;
[4] A. G. Tijhuis, “Iterative determination of permittivity and conductivity The FDTD algorithm solves aniinitial boundary-value problem using

profiles of a dielectric slab in time domailEEE Trans. Antennas Prop- Onl}’ Maxwell's curl equa.tions. Let us i”VeStiQate briefly the way ir.1
agat, vol. AP-29, pp. 239-245, Mar. 1981. which these vector equations determine the fields’ temporal behavior.
[5] — "PIER 5: Application of conjugate-gradient methods in elecTo this end, we need to study the divergencéBoandD, assuming
"O'Imagnet'? and s:gnal analysis,” itierative Tiachmques for the sources defined as an impressed current densityderimtheV x H
Solution of Integral Equations in Transient Electromagnetic Scat- . . . . . .
tering. Amsterdam, The Netherlands: Elsevier, 1991, ch. 13, p&qugt_lc_)n.Taklngthe divergence of both sides of the curl equ_amons,wnh
455-538. the initial values'V - B);=o = 0 and(V - D);=, = 0, we notice the
[6] R. Mittra, “Topics in applied physics, transient EM fields,” Inte- ~ following.
gral Equation Methods for Transient ScatteringBerlin, Germany:
Springer-Verlag, 1976, pp. 73-128.
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